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LETTER TO THE EDITOR 

Condon domains as sineGordon solitons 
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Abstract. Magnetic domains and the de Haas-van Alphen effect are considered on the basis 
of the sine-Gordon equation being of Lagrange-Euler form for magnetic induction. The 
kink (soliton) solution obtained describes thedomain wallsof Condon domains. Calculations 
of the domain wall width and energy are carried out. 

Shoenberg (1962) showed that the magnetisation M of real metals as a function of the 
magnetic field strength H can be approximated as the magnetisation of a system of 
electrons in the presence of the field B = H + 4nM.  He pointed out that if the mag- 
netisation is large compared with A B ,  where A B  is the period of the magnetisation 
oscillations, Hshould be replaced by B in the Lifshitz-Kosevich (1956) formula. Pippard 
(1963) considered the problem of magnetic interaction and showed that Shoenberg's 
arguments lead to a multiple-valued M as a function of the field. Under these conditions 
the de Haas-van Alphen effect is non-linear and hence a sample breaks into magnetic 
domains (Condon 1966, Condon and Walstedt 1968). The stratification of the sample 
into Condon domains occurs when the following condition is fulfilled: x = 
dM(B)/d B > 1/4n, where x is the magnetic susceptibility. Conventional consideration 
of Condon domains (Privorotskii 1967, Ying and Quinn 1969, Markievicz 1986, Maniv 
and Vagner 1989, Gordon et a1 1989) is based on expansions of the oscillating mag- 
netisation in a power series in the magnetic induction. Also according to Pippard (1963) 
the magnetisation can be closely approximated as a sinusoidal function of the magnetic 
induction. Therefore, it is natural to study Condon domains on the basis of the sinusoidal 
behaviour of the magnetisation. In this letter we shall show that the sinusoidal depen- 
dence of the magnetisation on magnetic induction leads to new properties of Condon 
domains. 

A detailed study of Condon domains was carried out by Privorotskii (1967). Fol- 
lowing Pippard (1963) he suggested that the oscillating magnetisation may be repre- 
sented as the following sinusoidal function of the magnetic induction: 

4 n ~ , , ( ~ )  = [(4nx - 1)/n] sin(nB) (1) 

whereMOis themagnetisationforthespatiallyhomogeneouscase,B = B - ( B ,  + B2)/2, 
where B1 and B2 are values of B in different domains, n = 2n/(B2 - B J .  It was 
shown that the correction to the magnetisation connected with the inhomogeneity is 
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proportional to V2B in the case of weak inhomogeneity. Then the problem of mini- 
misation of the thermodynamic potential with respect to B for determination of the 
domain wall shape and width is reduced to the solution of the following Lagrange-Euler 
equation (Privorotskii 1967): 

-(4nx - l )B  + n 2 B 3 / 6  = (~6/4)  d2B/dX2 (2) 
where the sine in (1) is replaced by its expansion in a power series up to the term in B 3 ,  
yo is the cyclotron radius and the x axis is perpendicular to the transitional layer. In this 
case B is of the Ginzburg-Landau form: 

B = [V%(4nx - 1)'/2/n] tanh(x/A) 

A = ro/2*(4nx - l)'12. 

-[(4nx - l)/n] sin(nB) = (~$ /4 )  d2B/dx2 

(3) 

(4) 

( 5 )  

where the domain wall width is given by 

We do not expand the sine in (1). Then we obtain 

instead of (2). Equation ( 5 )  is a modification of the sine-Gordon equation (Rubinstein 
1970): it is a time-independent sine-Gordon equation. The equation is integrated to 
give 

where sn is the Yakobi elliptic function, k is its module k = [2/(1 + E)]'I2 where E is the 
constant of the first integration (the constant of the second integration is chosen as zero: 
xo = 0). Fork  = 1 ( E  = 1) we have 

B = (2/n) sin-'{sn[2(4nx - ~ ) ' / ~ x / k r ~ ,  k]) (6) 

B = (2/n) sin-'{tanh[2(4nx - 1)1~2x/rO]}. (7) 

B ( + m )  = n/n  B ( - m )  = -n/n dB(ztW)/dx = 0. (8) 

B = (4/n) tan-'{exp[2(4nx - ~ ) ' / ~ x / r ~ ] }  - n/n. (9) 

The solution (7) corresponds to boundary conditions of the domain type 

Equation (7) is equivalent to 

The solution (7) is a kink giving a domain wall: for x+ +x, B = ( B ,  - B,)/2, cor- 
responding to the value of the magnetic induction in one domain B = B,; forx = -+ -m, 
B = - (B2 - B1)/2, corresponding to the value of the magnetic induction in another 
domain B = B,. The width of the domain (7), A, is different from ( 3 )  and is equal to 

A = ~, /2(4nx - l)'12. (10) 
We suppose here that the width of the transition layer is small compared with the width 
of domains themselves. This justifies the boundary conditions (8). For this reason 
the domain wall may be regarded as planar and the problem as one-dimensional. 
Calculations of the surface tension of the domain wall (7) give the following expression: 

fJ = r0(4nx - 1)1'2(B2 - B1)2/n2. 

f J =  ro(4nx - 1)lI2(B2 - B 1 ) ~ / 2 4 f i n .  

(11) 
Equation (11) is different from the expression obtained by Privorotskii (1967) for the 
domain wall energy: 

(12) 
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